

WBS 1.1 Structural Components (EBIS, LEBT, External Sources)

Alexander Pikin

July 25-27, 2005

1. Superconducting solenoid

Will be purchased from the outside vendor, possibly American Magnetics Inc.

Needs to be done at BNL:

- Finalize requirements,
- Final assessing of magnetic field,
- Inspection, installation, safety review.

Procurement: \$328,299

Base for the cost: 2005 Quote from American Magnetic Inc.

2. Electron gun

Provides:

- I_el=20 A
- j_emission=35 A/cm²
- Operation in a wide range of current, voltage and magnetic field
- Versatility (variable electron beam profile and perveance)
- Maintainability (robust design, replaceable unit)

Degree of readiness of the electron gun:

Has been done:

- Simulated electron beam extraction and propagation in anode and first drift tubes,
- The mechanical design of the gun is nearly complete

Needs to be done:

- Final simulations with final magnetic field,
- Procurements, manufacturing, testing.

Required resources:

Procurements ('05\$): \$53,000

Manpower: \$53,899

Base for estimate:

Quote for cathodes from BINP (Novosibirsk), catalogs.

3. <u>Drift tube structure</u>

Proposed DT structure:

- Larger ID of drift tubes (42 mm instead of existing 31mm),
- Internal pumping capability (NEGs) for better vacuum,
- Design is based on existing design and experience.

We have conceptual design and assembly drawing

Procurements ('05\$): \$80,000

Base for estimate: cost of existing structure (Historical cost)

4. Central chamber with its heater

Provides:

- Housing for drift tubes and HV leads,
- Bakeout and magnetic steering of the electron beam

We have: assembly design based on EBTS prototype, technology "know how".

Procurements ('05\$): \$20,000

Base for estimate: catalogs, prototype cost.

5. Collector-transition chamber

Provides:

- Part of electro- and magneto-optical structure between central chamber and electron collector
- Vacuum separation between electron collector and central chamber
- Vacuum pumping and monitoring
- HV drift tubes connections
- Electron beam loss monitoring
 Design is based on using standard elements.

We have: assembly drawing and vacuum separation design, design & technology of magnet coil, prototype "know how".

Procurements ('05\$): \$15,442

Base for estimate: MDC, ISI catalogs, engineering judgment.

6. Stands, Platform hardware

Includes:

- Stands,
- Manifolds,
- Fast ion extraction unit,
- Transverse coils.

Provides:

- Support of major EBIS parts,
- HV insulation,
- Cooling water and pressurized air distribution,
- Controlled high speed ion extraction,
- Magnetic control of electron beam propagation

6. Stands, Platform hardware

We have: EBTS prototype design of supports, and manifolds, prototype of fast extraction unit.

Required resources:

Procurements ('05\$): \$85,000

Manpower: \$103,402

Base for estimate: engineering judgment

7. <u>LEBT</u>

Provides:

- Transport of the beam of highly charged ions extracted from EBIS to the RFQ
- Transport of the primary ion beam from an auxiliary ion source to EBIS
- Transport of the deuteron beams from additional ion source to the RFQ
- Ion beam diagnostics.

7. <u>LEBT</u>

We have:

- Preliminary optical simulation of the ion extraction from EBIS and propagation in LEBT structure,
- A version of mechanical design with assembly drawing.

Required resources:

Procurements ('05\$): \$82,000

Manpower: \$66,237

Base for estimate: Quote for accelerating tube from BINP (Novosibirsk), catalogs, engineering judgment.

8. External ion injection

8. External ion injection

Provides:

- Primary beams of low charged ions for injection into EBIS,
- Transport of primary ions to LEBT,
- Control of used ion source or selection of ion species,
- Vacuum pumping with vacuum separation.

We have:

- Developed versions of hollow cathode ion source and LEVA,
- Developed methods of mass-separation, vacuum separation and pumping.

Required resources:

Procurements ('05\$): \$75,554

Manpower: \$63,802

Base for estimate: catalogs, engineering judgment.

9. Electron collector (R&D)

Provides:

- Controlled dissipation of the electron beam,
- Heat removal from electron beam power,
- Ion beam extraction, transport and injection,
- Vacuum pumping.

We have:

- Optical simulations of electron and ion beam transmission,
- Thermal, hydraulic, stress simulations, critical power density and fatigue analysis,
- Mechanical design with design review.

This will be procured/fabricated as part of the R&D, but will later be used on the final EBIS.

Risk assessment

Components	Risk	Mitigations	
Electron gun	Low		
Electron collector	Technical (advanced materials and technologies)	Early procurement, test in R&D	
Superconducting solenoid	Cost	40% contingency	
LEBT	Technical (still in design & simulation stage)	Test in R&D	

WBS 1.1 Structural Components

Estimated Cost

		Direct FY'05K\$			
WBS	Description	Mat'l	Labor	Contingency	Total
1.1	Structural Components	1675	680	\$665 (28%)	3020
	EBIS, LEBT, external inj	770	480	\$320 (26%)	1570
	RFQ, Linac, Bunchers	905	200	\$345 (31%)	1450

Labor hours/equivalents

	EBIS, LEBT, external inj	
Resource Category	estimated hours	
Scientist	1,760	
Engineer	2,255	
Designer	5	
Technician	2,540	
Management	275	
Building Trades	50	
Total	6885	
Full Time Equivalents	3.9	

Conclusion

- Design of all components of RHIC EBIS is based on tested design of similar components of the Test EBIS, with improvements in reliability, maintainability, vacuum quality.
- Most of RHIC EBIS components are in an advanced design stage with simulations and calculations mostly done.
- For prototypes of the most critical components (electron collector, LEBT) R&D study is planned in advance of final manufacturing.

